Autonomy through SLAM for an Underwater Robot
نویسندگان
چکیده
An autonomous underwater vehicle (AUV) is achieved that integrates state of the art simultaneous localization and mapping (SLAM) into the decision processes. This autonomy is used to carry out undersea target reacquisition missions that would otherwise be impossible with a low-cost platform. The AUV requires only simple sensors and operates without navigation equipment such as Doppler Velocity Log, inertial navigation or acoustic beacons. Demonstrations of the capability show that the vehicle can carry out the task in an ocean environment. The system includes a forward looking sonar and a set of simple vehicle sensors. The functionality includes feature tracking using a graphical square root smoothing SLAM algorithm, global localization using multiple EKF estimators, and knowledge adaptive mission execution. The global localization incorporates a unique robust matching criteria which utilizes both positive and negative information. Separate match hypotheses are maintained by each EKF estimator allowing all matching decisions to be reversible.
منابع مشابه
Belief-space Planning for Active Visual SLAM in Underwater Environments
Autonomous mobile robots operating in a priori unknown environments must be able to integrate path planning with simultaneous localization and mapping (SLAM) in order to perform tasks like exploration, search and rescue, inspection, reconnaissance, target-tracking, and others. This level of autonomy is especially difficult in underwater environments, where GPS is unavailable, communication is l...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملTowards Constant-Time SLAM on an Autonomous Underwater Vehicle Using Synthetic Aperture Sonar
This paper applies a new constant-time, consistent and convergent Simultaneous Localization and Mapping (SLAM) algorithm to an autonomous underwater vehicle (AUV). A constant-time SLAM algorithm offers computation independent of workspace size and is one key component in the development of truly autonomous agents. The real-time deployment of such a system would be a landmark achievement for the...
متن کاملAEKF-SLAM: A New Algorithm for Robotic Underwater Navigation
In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM) applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009